** перроне стоит человек. Мимо него движется поезд. Первый вагон проехал за время t1,...

0 голосов
163 просмотров

На перроне стоит человек. Мимо него движется поезд. Первый вагон проехал за время t1, второй - за время t2. Длинна вагона L. Найти ускорение поезда а и его скорость v0 в начале наблюдения. Движение поезда считать равнопеременным.

Нужно две формулы вместе с их выводом.


Физика (167 баллов) | 163 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

V₀- начальная скорость
v₁ - скорость прохожения конца первого (и начала второго) вагона мимо наблюдателя
v₂  - скорость прохожения конца второго вагона
Получаем для первого вагона
L=v₀t₁+at₁²/2
v₁=v₀+at₁
для второго вагона
L=v₁t₂+at₂²/2 или L=(v₀+at₁)t₂+at₂²/2
получаем систему уравнений
L=v₀t₁+at₁²/2
L=v₀t₂+at₁t₂+at₂²/2
выразим из первого уравнения v₀
v₀t₁=L-at₁²/2
v_0= \frac{L}{t_1}- \frac{at_1}{2}
подставим во второе
L=(\frac{L}{t_1}- \frac{at_1}{2})t_2+at_1t_2+ \frac{at_2^2}{2} \\ L=L\frac{t_2}{t_1}- \frac{at_1t_2}{2}+at_1t_2+ \frac{at_2^2}{2} \\ L-L\frac{t_2}{t_1}= \frac{at_1t_2}{2}+ \frac{at_2^2}{2} \\ L(1-\frac{t_2}{t_1})= \frac{at_2}{2}(t_1+t_2)
2L\frac{t_1-t_2}{t_1}= at_2(t_1+t_2) \\ a=2L\frac{t_1-t_2}{t_1t_2(t_1+t_2)}
v_0= \frac{L}{t_1}- 2L\frac{t_1-t_2}{t_1t_2(t_1+t_2)}\frac{t_1}{2}=\frac{L}{t_1}- L\frac{t_1-t_2}{t_2(t_1+t_2)} \\ v_0=L(\frac{1}{t_1}- \frac{t_1-t_2}{t_2(t_1+t_2)})

(101k баллов)