найдём корни находящегося под корнем квадратного трёхчлена, чтобы разложить его на множители; по теореме, обратной теореме Виета, находим корни уравнения
:
,
итак, исходное уравнение:
прибегнем к замене
, тогда
перенесём всё влево и сгруппируем:
прибегнем к замене
(ведь выражения
и
неотрицательны) и по теореме, обратной теореме Виета, найдём корни уравнения
:
(не удовлетворяет ограничениям, приведённым выше),
обратная замена:
; решим уравнение, возведя обе части в квадрат (делать это можно постольку, поскольку обе части уравнения неотрицательны):
ОТВЕТ: