Пусть M — середина гипотенузы AB, N — середина катета BC, K — точка касания данной окружности с прямой AC, P — середина средней линии MN треугольника ABC. Перпендикуляр к AC, проведённый через точку K, проходит через центр окружности и делит пополам перпендикулярную ему хорду MN, т.е. проходит также через точку P. Тогда
CK =
NP =
MN = .
AC =
AC.
Следовательно, CK : AK = 1 : 3.