Найдите координаты точки пересечения медиан треугольника ABC, если A (-2;1;3), B...

0 голосов
113 просмотров

Найдите координаты точки пересечения медиан треугольника ABC, если A (-2;1;3), B (1;2;-2), C (3;-2;1).


Геометрия (397 баллов) | 113 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Координаты середины М отрезка ВС, это полусуммы соответствующих координат начала и конца отрезка ВС:
М(2;0;-0,5).
Отрезок АМ (медиана) точкой пересечения делится в отношении 2:1, считая от вершины А (свойство).
Если известны две точки пространства А(Xa;Ya;Za) и М(Xm;Ym;Zm) , то координаты точки O(Xo;Yo;Zo), которая делит отрезок АМ  в отношении λ=АО/ОМ=2/1, выражаются формулами:
Xo=(Xa+λ*Xm)/(1+λ).
Yo=(Ya+λ*Ym)/(1+λ).
Zo=(Za+λ*Zm)/(1+λ).  В нашем случае:
Xo=(-2+2*2)/3 = 2/3.
Yo=(1+2*0)/3 = 1/3.
Zo=(3+2*(-0,5))/3 = 2/3.
Ответ: О(2/3;1/3;2/3)

Попробуем с медианой СМ к стороне АВ.
Середина М отрезка АВ:
М(-0,5;1,5;0,5).
Отрезок СМ (медиана) точкой пересечения делится в отношении 2:1, считая от вершины С (свойство).
Если известны две точки пространства С(Xс;Yс;Zс) и М(Xm;Ym;Zm) , то координаты точки O(Xo;Yo;Zo), которая делит отрезок СМ  в отношении λ=АО/ОМ=2/1, выражаются формулами:
Xo=(Xс+λ*Xm)/(1+λ).
Yo=(Yс+λ*Ym)/(1+λ).
Zo=(Zс+λ*Zm)/(1+λ).  В нашем случае:
Xo=(3+2*(-0,5))/3 = 2/3.
Yo=(-2+2*1,5)/3 = 1/3.
Zo=(1+2*0,5)/3 = 2/3.
Ответ: О(2/3;1/3;2/3)

(117k баллов)