Найти производную функции u=(xuz) ^2 в точке А(1,-1,3) в направлении, идущем от этой...

0 голосов
56 просмотров

Найти производную функции u=(xuz) ^2 в точке А(1,-1,3) в направлении, идущем от этой точки к точке В(0,1,1) От. :-22


Математика (161 баллов) | 56 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

1) Находим частные производные:
du/dx=2*x*y²*z², du/dy=2*y*x²*z², du/dz=2*z*x²*y².

2) Находим значения частных производных в точке А:
du/dx(A)=2*1*(-1)²*3²=18, du/dy(A)=2*(-1)*1²*3²=-18, du/dz(A)=1²*(-1)²*2*3=6

3) Построим вектор AB. Его координаты таковы: AB=(0-1,1-(-1), 1-3), или AB=(-1,2,-2). Тогда длина этого вектора /AB/=√((-1)²+2²+(-2)²)=√9=3, а направляющие косинусы таковы: cos(α)=-1/3, cos(β)=2/3, cos(γ)=-2/3. 

4) находим производную по направлению:
du/dl=du/dx(A)*cos(α)+du/dy*cos(β)+du/dz*cos(γ)=18*(-1/3)+(-18)*2/3+6*(-2/3)=-6-12-4=-22. Ответ: -22.

(91.0k баллов)