Две стороны параллелограмма 2√3см и 4см, а угол между ними 30°. Найти меньшую диагональ и...

0 голосов
60 просмотров

Две стороны параллелограмма 2√3см и 4см, а угол между ними 30°. Найти меньшую диагональ и площадь параллелограмма.
Помогите пожалуйста.


Геометрия (23 баллов) | 60 просмотров
0

это противоположные стороны?

0

да

0

Это смежные стороны, так как противоположные стороны у параллелограмма равны.

Дан 1 ответ
0 голосов

Площадь параллелограмма равна произведению двух его смежных сторон на синус угла между ними:
S=4*2√3*sin30°=4√3 см².
Для того, чтобы найти меньшую диагональ, необходимо воспользоваться теоремой косинусов для треугольника:
a²=b²+c²-2b*c*cosβ
Находим диагональ:
а²=4²+(2√3)²-2*4*2√3*cos30°=16+12-16√3*√3/2=28+24=52
a=√52=2√13

(1.2k баллов)