1)Средние линии треугольника находятся в том же отношении, что и стороны треугольника.
Обозначим стороны треугольника буквами а, в и с.
Тогда а:в:с=2:3:4, т.е. а=2х, в=3х, с=4х
По условию, периметр Р=45см, т.е. а+в+с=45
2х+3х+4х=45
9х=45
х=45:9
х=5(см)
а=2х=2*5=10(см)
в=3х=3*5=15(см)
с=4х=4*5=20(см)
Ответ:10 см, 15 см, 20 см.
2)Отрезок EF не является средней линией треугольника
Есть теорема: каждая медиана треугольника делится точкой их пересечения на 2 части, длины которых относятся как 2:1.
То есть отрезок ВО в 2 раза больше отрезка ОD.
Рассмотрим два треугольника: основной АВС и верхний EBF.
Ясно, что они подобны. Всем известно, что в подобных треугольниках отношение длин сторон одного тр-ка к сторонам другого тр-ка - постоянная величина.
Но это же относится и к другим отрезкам, не только к сторонам.
В частности, к медианам.
Легко увидеть, чему равно отношение медиан ВО/ВD = 2/3.
Значит, и отношение оснований такое же:
EF / 15 = 2/3
Отсюда EF = 10 см.
3)По теореме Пифагора
Видим, что катет АС в 2 раза меньше гипотенузы. Значит угол В = 30 град.
Ответ: 30 град; 10 см
4)1. sin β = bh/bc, отсюда
bh = sin β * bc = 7sin β
2. tg α = bh/ah, отсюда
ah = bh/tg α = 7sin β / tg α
Может неправильно