1.В прямоуг. треуг сумма острых углов равна 90 градусов. Если один угол в восемь раз больше другого, то примем градусную меру меньшего угла за (х) градусов,и получим 8х градусов, составим уравнение:
х+8х=90
9х=90
х=10 градусов меньш угол
8*10=80 градусов больший остр угол
2. обозначим за х острый угол, из которого опущена биссектриса. этот угол разделяется биссектрисой на два равных угла х/2. Прямой угол биссектрисой делится на 2 угла по 45градусов. Сумма углов в полученном треугольнике: 45+132+х/2=180 х/2=3 х=6градусов Тогда 3й угол в треугольнике равен 180-90-6=84градусов 3) Угол равен 60градусов ,биссектриса разделит его на 2 угла по 30градусов Катет, лежащий против угла 30° равен половине гипотенузы: следовательно 18/2=9 4) В прямоугольном треугольнике сумма острых углов равняется 90градусов В равнобедренном треуг углы при основании равны. Основание является гипотенузой значит острые углы равны 45 градусам Из этого следует равенство по двум углам и стороне между ними