Остатки от деления числа на 9 и остаток от деления суммы цифр того же числа на 9 равны. Доказать сей факт легко. пусть есть число A = xₐxₐ₋₁...x₀, где x - цифра в его десятичной записи, тогда можем представить в виде A = xₐ * 10ᵃ + xₐ₋₁ * 10 ᵃ⁻¹ + ... ⁺ x₀ * 10⁰. Остаток деления 10 в любой степени на 9 = 1, тогда остаток деления А на 9 запишем в виде xₐ + xₐ₋₁ + ... + x₀, что и будет являться суммой цифр числа. Применяя этот факт, видим, что 2012! остаток от деления на 9 =0 , значит и все все суммы цифр, которые нужно проделать по условию будут иметь такой же остаток. Однозначное число, делящееся на 9 без остатка - 9.
Ответ: 9