Решить систему уравнений, исследовав ** совместность по теореме Кронекера-Капелли:А)...

0 голосов
62 просмотров
Решить систему уравнений, исследовав на совместность по теореме
Кронекера-Капелли:
А) 5х1+2х2+3х3=0 Б) 2х1-4х2+5х3=0
2х1-2х2+5х3=0 х1-3х2+3х3=0
3х1+4х2+2х3=0 3х1-5х2+9х3=0





Математика (33 баллов) | 62 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Однородная система линейных уравнений всегда совместна. Она имеет нетривиальные (ненулевые) решения, если ранг матрицы меньше количества переменных.

а) image \left[\begin{array}{ccc}10&4&6\\2&-2&5\\6&8&4\end{array}\right] => \left[\begin{array}{ccc}0&14&-19\\2&-2&5\\0&14&-11\end{array}\right] => \left[\begin{array}{ccc}2&-2&5\\0&14&-11\\0&0&-8\end{array}\right] " alt=" \left[\begin{array}{ccc}5&2&3\\2&-2&5\\3&4&2\end{array}\right] => \left[\begin{array}{ccc}10&4&6\\2&-2&5\\6&8&4\end{array}\right] => \left[\begin{array}{ccc}0&14&-19\\2&-2&5\\0&14&-11\end{array}\right] => \left[\begin{array}{ccc}2&-2&5\\0&14&-11\\0&0&-8\end{array}\right] " align="absmiddle" class="latex-formula">
1: 1ю строку *2
    3ю строку *2
2: из первой строки вычитаем вторую строку, умноженную на 5
    из третьей строки вычитаем вторую строку, умноженную на 3
3: из первой строки вычитаем третью строку и располагаем строки в порядке убывания
приведя матрицу к ступенчатому виду, видим, что её ранг равен трём и равен количеству переменных => СЛУ имеет только одно тривиальное (все переменные равны 0) решение


б) image \left[\begin{array}{ccc}0&-2&1\\1&-3&3\\0&4&0\end{array}\right] => \left[\begin{array}{ccc}1&-3&3\\0&4&0\\0&4&2\end{array}\right] => \left[\begin{array}{ccc}1&-3&3\\0&4&0\\0&0&2\end{array}\right] " alt=" \left[\begin{array}{ccc}2&-4&5\\1&-3&3\\3&-5&9\end{array}\right] => \left[\begin{array}{ccc}0&-2&1\\1&-3&3\\0&4&0\end{array}\right] => \left[\begin{array}{ccc}1&-3&3\\0&4&0\\0&4&2\end{array}\right] => \left[\begin{array}{ccc}1&-3&3\\0&4&0\\0&0&2\end{array}\right] " align="absmiddle" class="latex-formula">

1: из первой строки вычитаем удвоенную вторую строку
   из третьей строки вычитаем утроенную вторую строку
2: умножаем первую строку на -2
   меняем местами первую и вторую строку
3: вычитаем из третьей строки вторую строку и меняем их местами, таким образом приводя матрицу к ступенчатому виду
видим, что ранг матрицы равен 3 и равен количеству переменных => СЛУ имеет только одно тривиальное решение

(1.4k баллов)
0

из (а) в последней матрице цифры, которые не видно: 5, -11, -8