В прямоугольной призме стороны основания 25 см 24 см и 36 см площадь полной поверхности...

0 голосов
111 просмотров

В прямоугольной призме стороны основания 25 см 24 см и 36 см площадь полной поверхности 1600 см2 найти объём


Математика (24 баллов) | 111 просмотров
Дан 1 ответ
0 голосов

Треугольник в основании имеет стороны (6, 25, 29). Его можно представить, как разность двух Пифагоровых треугольников - со сторонами (20, 21, 29) и (15, 20, 25).

Делается это так - на катете 21 треугольника (20, 21, 29) от вершины прямого угла откладывается 15 и соединяется с вершиной противоположного острого угла. 

Этот "трюк" нужен для того, чтобы устно вычислить высоту (к стороне 6) и площадь треугольника (6, 25, 29). Высота равна 20, а площадь 60.

 

(Конечно, все это можно сделать "стандартными методами", то есть сообразить, что между сторонами 6 и 25 - тупой угол, продлить сторону 6 за вершину тупого угла, и опустить перпендикуляр из противоположной вершины. Затем записать теорему Пифагора для получившихся треугольников и решить её - как раз и получим ответ 20.

А можно - если совсем жалко мозги тратить - сосчитать площадь по формуле Герона. Получим 60 - можете проверить :)

Все эти методы - правильные, но у моего "неправильного" есть одно преимущество - ответ в одну секунду сам собой получается без всяких вычислений. Вернусь к задаче.)

 

Пусть высота призмы (боковое ребро) равно х. Тогда по условию

х*(6 + 25 + 29) + 2*60 = 1560; х = 24;

Объем 60*24 = 1440;

(150 баллов)