Решите неравенство. (Log 0,5 x)^2 - 3log 0,5 x - 4 <= 0<hr>
(Log (0.5, x))^2 - 3log( 0.5, x )- 4 <= 0<br>D=9+16=25 1) log(0.5,x)=(3+5)/2=4 2) log(0.5,x)=(3-5)/2=-1 (log(0.5,x)-4)(log(0.5,x)+1)<=0<br>(x-(0.5)^4)(x-(0.5)^(-1))<=0<br>(x-0.0625)(x-2)<=0<br> ОТВЕТ : x∈[0.0625;2]
(log(0,5)x)²-3log(0,50x-4≤0 ОДЗ x>0 x∈(0;∞) log(0,5)x=t t²-3t-4≤0 t1+t2=3 U t1*t2=-4 t1=-1 U 2=4 + _ + --------[-1]------------[4]-------------- -1≤t≤4 -1≤log(0,5)≤4 0,0625≤x≤2 x∈[0,0625;2]