в равнобедренный прямоугольный треугольник вписан ромб так, что один острый угол у них...

0 голосов
126 просмотров

в равнобедренный прямоугольный треугольник вписан ромб так, что один острый угол у них общий и все четыре вершины ромба лежат на сторонах треугольника. найти стороны ромба если длина катета равна (2+корень из 2)/5


Геометрия (15 баллов) | 126 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Пусть длина стороны ромба х. Легко видеть, что вершина ромба делит катет, противоположный общему углу на части, равные х (если смотреть от НЕобщего острого угла, то там равнобедренный прямоугольный треугольник со стороной х)

и х*корень(2)/2 (смотрим от прямого угла, видим равнобедренный прямоугольный треугольник с ГИПОТЕНУЗОЙ х, то есть катетом х*корень(2)/2)

Получается просто

х*(1 + корень(2)/2) = (2 + корень(2))/5; 

х = 2/5.

Это всё... уже закончилось :)))

 

(69.9k баллов)