Решите системы неравенств:

0 голосов
43 просмотров

Решите системы неравенств:


image

Алгебра (947 баллов) | 43 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

1)
\left \{ {{5^x\ \textgreater \ 25} \atop {( \frac{1}{3})^{x-8}\ \textless \ \frac{1}{27} }} \right. =\ \textgreater \ \left \{ {{5^x\ \textgreater \ 5^2} \atop {( \frac{1}{3})^{x-8}\ \textless \ ( \frac{1}{3} )^3 }} \right. =\ \textgreater \ \left \{ {{5^x\ \textgreater \ 5^2} \atop {3^{-(x-8)}\ \textless \ 3^{-3}}} \right. =\ \textgreater \ \left \{ {{x\ \textgreater \ 2} \atop {8-x\ \textless \ -3}} \right. =\ \textgreater \ \\ \\ =\ \textgreater \ \left \{ {{x\ \textgreater \ 2} \atop {x\ \textgreater \ 11}} \right. =\ \textgreater \ x \in (11; +\infty)

2)
\left \{ {{8\ \textgreater \ ( \frac{1}{2} )^{6-x}} \atop {3^{4x}\ \textgreater \ 81}} \right. =\ \textgreater \ \left \{ {{2^3\ \textgreater \ 2^{-(6-x)}} \atop {3^{4x}\ \textgreater \ 3^4}} \right. =\ \textgreater \ \left \{ {{3\ \textgreater \ x-6} \atop {4x\ \textgreater \ 4}} \right. =\ \textgreater \ \left \{ {{x\ \textless \ 9} \atop {x\ \textgreater \ 1}} \right. =\ \textgreater \ x\in (1;9)

(18.4k баллов)
0 голосов

1
{5^x>25⇒x>2
{(1/3)^(x-8)<1/27⇒x-8>3⇒x>11
x∈(11;∞)
2
{8>2^(x-6)⇒x-6<3⇒x<9<br>3^(4x)>81⇒4x>4⇒x>1
x∈(1;9)

(750k баллов)