task/27244703
-------------------
Решить систему уравнений
{sin(x) = cos(y) ,
{sin²(x) +cos²(y) =1/2 .
-----------------------------
{sin(x) = cos(y) , {sin(x) = cos(y) ,
{sin²(x) +cos²(y) =1/2 .⇔ { ( sin(x) - cos(y) )²+ 2sin(x)*cos(y)=1/2 .⇔
{ sin(x) =cos(y) , { sin(x) = cos(y) ,
{ sin(x)*cos(y)=1/4 . ⇔ { sin(x)*sin(x) =1/4 .
sin²(x) =1/4 ⇔ sin(x) =± 1/2 .
следовательно :
а)
{ sin(x) = 1/2 , { x = (-1)ⁿπ/6 +πn ,
{ cos(y) = 1/2. { y =± π/3 +2πn , n∈Z .
или
б)
{ sin(x) = -1/2 , { x = (-1)^(k+1)*π/6 +πk ,
{ cos(y) = -1/2. { y =± 2π/3 +2πk , k ∈Z .