Назовем данный треугольник АВС.
Все сторона этого треугольника равны, так как он правильный.
В нем все высоты одновременно являются медианами и биссектрисами (каждая расна 6 см по условию) и пересекаются в точке О.
Высоту полученной треугольной пирамиды DАВС обозначим DО.
Точка О делит высоту СК ΔАВС на части 2:1. СК по условию 6 см.
Значит СО=4 см, а ОК=2 см.
ΔСDО - прямоугольный, его катеты равны 3 см и 4 см. Гипотенуза СD = 5 см (египетский треугольник).
Расстояния от точки D до вершин ΔАВС одинаковы
Ответ : 5 см.