В основании пирамиды лежит прямоугольный треугольник, один из катетов которого 8см, а...

0 голосов
114 просмотров

В основании пирамиды лежит прямоугольный треугольник, один из катетов которого 8см, а радиус описанной около него окружности равен 5 см. Основанием высоты этой пирамиды является середина гипотенузы. Высота пирамиды равна 12см. Вычислить боковые ребра пирамиды.


Геометрия (14 баллов) | 114 просмотров
Дан 1 ответ
0 голосов

В основании пирамиды лежит прямоугольный треугольник. Центр окружности, описанной около прямоугольного треугольника, лежит на его гипотенузе. Соответственно, AB = 10 см, AO = 5 см.

Поскольку высота ON = 12 см, то величина ребер AN и NB равна
AN2 = AO2 + ON2
AN2 = 52 + 122
AN = √169
AN = 13

Поскольку нам известна величина AO = OB = 5 см и величина одного из катетов основания (8 см), то высота, опущенная на гипотенузу, будет равна
CB2 = CO2 + OB2
64 = CO2 + 25
CO2 = 39
CO = √39

Соответственно, величина ребра CN будет равна
CN2 = CO2 + NO2
CN2 = 39 + 144
CN = √183

Ответ: 13, 13 , √183

(14 баллов)