Нужно найти период каждой из присутствующих тригонометрических функций. Слагаемые -π/8; +π/7; +π/5 влияют только на смещение по оси x, на период они не оказывают никакого влияния. Множители, стоящие перед тригонометрическими функциями (7;√3;3)
также не влияют на период. На период влияют только:
1) x/6-увеличивает период в 6 раз
2) x/2-увеличивает период в 2 раза
3) x/3-увеличивает период в 3 раза
Зная периодичность функций y=sinx(период равен 2π), y=cos(период равен 2π), y=tgx(период равен π) можно найти периоды этих функций с данными аргументами:
T1=12π
T2=4π
T3=3π
Общим основным периодом функции будет НОК всех периодов.
T=НОК(T1,T2,T3)=12π