Найти наибольшее и наименьшее значения функции f(x)=4x-x^2 ** отрезке x[-1;0]

0 голосов
24 просмотров

Найти наибольшее и наименьшее значения функции f(x)=4x-x^2 на отрезке x[-1;0]


Алгебра (22 баллов) | 24 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

У = 4х - х²
у' = 4 - 2х
у' = 0
4 - 2х = 0
х = 2 - точка экстремума
в этой точке функция меняет знак с + на -, следовательно это точка максимума
но точка экстремума выходит за пределы интервала, поэтому наибольшее значение находится на одном из краёв интервала
На краях интервала
у( -1) = -5     у(0) = 0
следовательно унаим = у(-1) = -5, а у наиб = у(0) = 0

(145k баллов)