1) Рассмотрим треугольник МNK:
Сумма углов в любом треугольнике = 180 градусов, тогда:
5х + 9х + 4х = 180
18х = 180
х = 10
Тогда угол MNK = 9*10 = 90 градусов.
угол NMK = 5*10 = 40 градусов.
угол MKN = 4*10 = 50 градусов.
2) Рассмотрим треугольник АВС:
Угол АСВ = 180 - 90 - 40 = 50 градусов.
tgA = BC/AB, следовательно ВС = АВ*tgA = 3*tg40
3) Треугольники АВС и MNK подобные по первому признаку. Значит:
АВ/KN = BC/NM = AC/KM = 3/9 = 1/3 (коэффициент подобия)
4) Отношение площадей подобных треугольников равно квадрату коэффициента подобия, следовательно:
Sabc / Smnk = (1/3)^2 = 1/9.
5) Отношение периметров подобных треугольников равен коэффициенту подобия, т. е.:
Pabc / Pmnk = 1/3.
2. Так как противолежащие стороны параллелограмма равны (BC=AD,AB=CD),
то AB/BC=AB/AD=4/9.
Рассмотрим треугольник ABD:
так как AK - биссектриса угла A, то BK/KD=AB/AD=4/9 (б
иссектриса внутреннего угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон).
Ответ: 4:9