определите площадь треугольника если его стороны равны 35 и 14, а биссектриса угла между...

0 голосов
49 просмотров

определите площадь треугольника если его стороны равны 35 и 14, а биссектриса угла между ними равна 12


Геометрия (33 баллов) | 49 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Воспользуемся формулой площади тр-ка:

S = (1/2)*ab*sinα

Суммарная площадь 2-х малых тр-ов (на которые разбила биссектриса) равна площади исходного:

(1/2)*14*12*sin(α/2)  +  (1/2)*35*12*sin(α/2)  =  (1/2)*35*14*sinα

Решим полученное тригонометрическое уравнение:

sin(α/2)(35*28*cos(α/2) - 49*12) = 0

cos(α/2) = (49*12)/(35*28) = 3/5

Тогда: sin(α/2) = корень(1 - (9/25)) = 4/5

sinα = 2*(3/5)*(4/5) = 24/25

Площадь тр-ка:

S = (1/2)*35*14*(24/25) = 235,2

Ответ: 235,2 см^2.

 

 

(84.9k баллов)