Осевое сечение цилиндра-квадрат, площадь которого 12 см2. Найдите площадь основания...

0 голосов
1.4k просмотров

Осевое сечение цилиндра-квадрат, площадь которого 12 см2. Найдите площадь основания цилиндра


Геометрия (12 баллов) | 1.4k просмотров
Дан 1 ответ
0 голосов

Сторона квадрата, очевидно, равна
a = \sqrt{12}
Эта же сторона является диаметром основания цилиндра.
Площадь окружности вычисляется по формуле
s = \pi \: {r}^{2}
Где
r = \frac{a}{2} = \frac{ \sqrt{12} }{2} = \sqrt{3}
Подставим в формулу
s = \pi { \sqrt{ 3} }^{2} = 3\pi
Ответ:
3\pi


(5.2k баллов)