Integral ln(arctgx)/1+x^2*dx
∫(2^arctg(x)/(1+x²))dx= Замена t=arctgx => dt=dx/(1+x²) =∫2^tdt=2^t/ln2+C=2^(arctgx)/ln2+C. ∫(2х²/(1+x²))dx=2∫((х²+1-1)/(1+x²))dx=2∫(1-1/(1+x²))dx=2x-2arctgx+C.