Если по простому пересказать условие - то биссектрисы двух разных треугольников делят противолежащие стороны в равных отношениях.
обозначим отношение, в котором биссектрисы делят стороны как z
z = AE/EC = A1E1/E1C1
Но согласно теореме о биссектрисе противоположная сторона делится пропорционально прилежащим
BA/AE = BC/EC
AE = z*EC
BA/(z*EC) = BC/EC
BA/BC = z
или ВА = z*BC (1)
Т.е. сами прилежащие к углу В стороны в треугольнике АВС относятся как z
Анатигично показывается, что и
B₁A₁/B₁C₁ = z
или В₁А₁ = z*B₁C₁ (2)
Разделим выражение (2) на выражение (1)
В₁А₁/ВА = z*B₁C₁/(z*BC) = B₁C₁/BC
Т.е. треугольники подобны по второму признаку подобия - равный угол и пропорциональные две стороны.