Task/27151545
-------------------
(cos5a+5cos3a+10cosa)/(cosa)^5=
--------------------------
решение :
* * * cos²φ =(1+cos2φ)/2 ; cosα*cosβ =( cos(α+β)+ cos(α-β) )/2 * * *
----
cos⁵α =(cosα)*(cos²α)² =(cosα)* ( (1+cos2α) /2 )² =(cosα)* (1+2cos2α+cos²2α)/4 = (cosα)*(1+2cos2α+(1+cos4α)/2 )/4 =
(cosα)*(3 +4cos2α +cos4α*cosα)/8=(3cosα+4cos2α*cosα +cos4α*cosα) /8=(3cosα+2cosα+2cos3α +(cos5α+cos3α)/2)/8 =(cos5α+5cos3α+10cosα)/16 .
Следовательно :
(cos5α+5cos3α+10cosα) / (cos⁵α ) =
(cos5α+5cos3α+10cosα) / ( (cos5α+5cos3α+10cosα)/16 ) = 16.
ответ: 16