Task/27145483
-------------------
Количество целых решений неравенства 7/(x² -5x+6) +9/(x-3) < -1, принадлежащих отрезку [-6;0) равно:
-----------------------
* * * x²+px + q =(x -x₁)(x - x₂) * * *
7/(x² -5x+6) +9/(x-3) < -1⇔7/(x -2)(x-3) +9/(x-3) +1 < 0⇔
(7 + 9x-18 + x² -5x+6 ) / (x -2)(x-3) < 0 ⇔( x² +4x- 5) / (x -2)(x-3) < 0 ⇔
( x +5)(x- 1) / (x -2)(x-3) < 0 ⇔ ( x +5)(x -1)(x -2)(x-3) < 0
"+" " - " "+" "-" "+"
--------------- (-5)////////////// (1) ---------(2) //////////////////// ( 3) ----------------
x ∈( - 5; 1) ∪ (2 ; 3)
Количество целых решений неравенства , принадлежащих отрезку [-6;0) равно: (-4) +(-3) +(-2) +(-1) = -10 .
ответ: -10.