248
1)ОДЗ
5-x>0⇒x<5<br>35-x³>0⇒x<∛35<br>x∈(-∞;∛35)
lg(5-x)=lg(∛(35-x³)
5-x=∛(35-x³)
125-75x+15x²-x³=35-x³
15x²-75x+90=0
x²-5x+6=0
x1+x2=5 U x1*x2=6
x1=2 U x2=3
2)ОДЗ
4x-6>0⇒x>1,5
2x-5>0⇒x>2,5
x∈(2,5;∞)
log(√5)[(4x-6)/5]=log(√5)(2x-5)
(4x-6)/5=2x-5
4x-6=10x-25
10x-4x=-6+25
6x=19
x=3 1/6
251
ОДЗ
x-2>0⇒x>2
x-4≠0⇒x≠4
x∈(2;4) U (4;∞)
log(3)(x-2)²+log(3)(x-4)²=0
log(3)[(x-4)(x-2)]²=0
(x²-6x+8)²=1
1)x²-6x+8=-1
x²-6x+9=0
(x-3)²=0
x-3=0
x=3
2)x²-6x+8=1
x²-6x+7=0
D=36-28=8
x1=(6-2√2)/2=3-√2 U x2=3+√2