Пожалуйста можно конкретное решение, а не план или теорию. через точку пересечения...

0 голосов
41 просмотров

Пожалуйста можно конкретное решение, а не план или теорию. через точку пересечения прямых: 2x-5y-1=0 и x+4y-7=0 провести прямую, делящую отрезок между точками A(+4;-3) и B(-1;+2) в отношении λ=2/3


Математика (157 баллов) | 41 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

1. Ищем точку пересечения прямых. Для этого решаем систему уравнений:

2*x-5*y-1=0
x+4*y-7=0

Отсюда x1=3 и y1=1  - координаты точки пересечения. Обозначим её через M1(x1,y1). Теперь ищем координаты x2 и y2 точки M2(x2,y2) пересечения искомой прямой с отрезком, соединяющим точки A и B:

x2=(4+2/3*(-1))/(1+2/3)=10/3/(5/3)=2, y2=(-3+2/3*2)/(1+2/3)=(-5/3)/(5/3)=-1.

Составляем искомое уравнение как уравнение прямой, проходящей через 2 точки M1 и M2:

(x-x1)/(x2-x1)=(y-y1)/(y2-y1). Подставляя сюда найденные x1,x2,y1,y2, получаем:

(x-3)/(2-3)=(y-1)/(-1-1), или (x-3)/(-1)=(y-1)/(-2), или x-3=(y-1)/2. Отсюда 2*x-6=y-1 или 2*x-y-5 - искомое уравнение.


Ответ: 2*x-y-5=0. 


(91.1k баллов)