A(-2; -1); B(10; 10); C(8; -4)
а) Длина прямой AB
|AB| = √[(10+2)^2 + (10+1)^2] = √(12^2 + 11^2) = √(144+121) = √265
б) Уравнение прямой (AB)
(x + 2)/(10 + 2) = (y + 1)/(10 + 1)
(x + 2)/12 = (y + 1)/11
11(x + 2) = 12(y + 1)
11x - 12y + 22 - 12 = 0
11x - 12y + 10 = 0
в) Уравнение прямой (BC)
(x - 10)/(8 - 10) = (y - 10)/(-4 - 10)
(x - 10)/(-2) = (y - 10)/(-14)
7(x - 10) = y - 10
7x - y - 70 + 10 = 0
7x - y - 60 = 0
Угол ABC
г) Уравнение прямой, перпенд. к (АВ) и проходящей через С.
(AB): 11x - 12y + 10 = 0
Общий вид прямой, перпендикулярной к (AB)
12x + 11y + c = 0
И эта прямая проходит через C(8; -4)
12*8 + 11(-4) + c = 96 - 44 + c = 52 + c = 0
c = -52
Уравнение прямой: 12x + 11y - 52 = 0
д) Уравнение прямой, паралл. к (BC) и проходящей через А.
(BC): 7x - y - 60 = 0
Общий вид прямой, параллельной к (BC)
7x - y + c = 0
И эта прямая проходит через A(-2; -1)
7*2 - (-1) + c = 14 + 1 + c = 15 + c = 0
c = -15
Уравнение прямой: 7x - y - 15 = 0
е) Центр окружности O находится в середине отрезка [AB].
O((-2+10)/2; (-1+10)/2) = (4; 4,5)
Радиус окружности
R^2 = |OA| = (4+2)^2 + (4,5+1)^2 = 6^2 + 5,5^2 = 36+30,25 = 66,25
Уравнение окружности
(x - 4)^2 + (y - 4,5)^2 = 66,25
Чертежи сам рисуй, у меня тетрадки в клеточку нет.