Найдите два числа,отношение которых равно 3,а отношение суммы квадратов этих чисел к их...

0 голосов
93 просмотров

Найдите два числа,отношение которых равно 3,а отношение суммы квадратов этих чисел к их сумме равно 5


Алгебра (15 баллов) | 93 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

Х-1 число,у-2 число
{х/у=3⇒x=3y
{(x²+y²)/(x+y)=5
(9y²+y²)/(3y+y)=5
10y²=20y,y≠0
10y²-20y=0
10y(y-2)=0
y=0 не удов усл
у=2
х=6
Ответ числа 6 и 2

(750k баллов)
0 голосов

Пусть первое число х, а второе у. Тогда верно следующее: x/y=3 (или x=3y) и то, что (x^2+y^2)/(x+y)=5. Т.к. x=3y, то подставим в значения x значение 3y: (9y^2+y^2)/(3y+y)=5, тогда 10y^2/4y=5, и в итоге: 2,5y=5, тогда y=2, а соответственно x=3*2=6. Проверим: 6/2=3? да, (2^2+6^2)/(2+6)=5? да.

(2.3k баллов)