ПОМОГИТЕ СРОЧНО!!!! Сколько двузначных чисел, которые уменьшаются в 13 раз при...

0 голосов
49 просмотров

ПОМОГИТЕ СРОЧНО!!!!
Сколько двузначных чисел, которые уменьшаются в 13 раз при отбрасывании последней цифры?
Перечислите эти цифры!!!!!


Математика (200 баллов) | 49 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

6/Задание № 1:

Сколько двузначных чисел, которые уменьшаются в 13 раз при отбрасывании последней цифры?

РЕШЕНИЕ: Пусть это число АВ=10a+b. При отбрасывании последней цифры возникает число A=a. Двузначное число в 13 раз больше однозначного, значит:

10a+b=13a

b=3a

Так как а и b цифры, то они должны быть целыми числами от 0 до 9, при чем а не совпадает с нулем, так как исходное число двухзначное.

Если а=1, то b=3 - число 13

Если а=2, то b=6 - число 26

Если а=3, то b=9 - число 39

Если а=4 и более, то b=12 и более - b не соответствует цифре. Все эти цифры были 3, 6, 9.

ОТВЕТ: 3

(56.7k баллов)
0 голосов

Любое двузначное число можно представить в виде
10a + b, где a - количество десятков, b - количество единиц.

a = \frac{10a + b}{13}

13a = 10a + b    ⇒      3a = b
Количество десятков в три раза меньше количества единиц.

Таких чисел 3:   13;  26:  39

Перечислите эти цифры!!!!!    3;   6;  9

(41.1k баллов)