Найдите наименьшее трехзначное число, обладающее следующим свойством: если к нему...

0 голосов
68 просмотров

Найдите наименьшее трехзначное число, обладающее следующим свойством: если к нему приписать справа число, большее на 1, то результат (шестизначное число) будет точным квадратом.


Алгебра (380 баллов) | 68 просмотров
0

Тут уже решали такое, поищи!

0

Где

Дан 1 ответ
0 голосов
Правильный ответ

Если исходное число равно A, то число, большее на 1, равно A + 1, а новое шестизначное число равно 1000A + (A + 1) = 1001A + 1. 1001A + 1 должно быть полным квадратом.

1001A + 1 = n^2
1001A = n^2 - 1
1001A = (n - 1)(n + 1)

100 <= A <= 998, поэтому 100101 <= n^2 <= 998999, 317 <= n <= 999.<br>
1001 = 7 * 11 * 13. Поскольку n < 1000, n - 1 или n + 1 не могут делиться на все три числа одновременно, перебираем варианты.

1) n - 1 делится на 7, n + 1 делится на 11 * 13 = 143.
n + 1 = 143k, k < 7
n - 1 = 143k - 2 = 140k + (3k - 2) делится на 7, т.е. 3k - 2 делится на 7. 
Перебором находим k = 3, n = 143 * 3 - 1 = 428.
n^2 = 183184, A = 183

2) n - 1 делится на 11, n + 1 делится на 7 * 13 = 91.
n + 1 = 91k, k < 11
n - 1 = 91k - 2 = 88k + (3k - 2) делится на 11, т.е. 3k - 2 делится на 11.
Перебором находим k = 8, n = 91 * 8 - 1 > 428

3) n - 1 делится на 13, n + 1 делится на 7 * 11 = 77.
n + 1 = 77k, k < 13
n - 1 = 77k - 2 = 78k - (k + 2), k + 2 делится на 13, откуда k = 11.
n = 77 * 11 - 1 > 428

4) n + 1 делится на 7, n - 1 делится на 143
n - 1 = 143k, k < 7
n + 1 = 143k + 2 = 140k + (3k + 2), 3k + 2 делится на 7, k = 7 - 3 = 4.
n = 143 * 4 + 1 > 428

5) n + 1 делится на 11, n - 1 делится на 91.
n - 1 = 91k, k < 11
n + 1 = 88k + (3k + 2), 3k + 2 делится на 11, k = 11 - 8 = 3
n = 91 * 3 + 1 = 274 < 317, не подходит

6) n + 1 делится на 13, n - 1 делится на 77.
n - 1 = 77k, k < 13
n + 1 = 78k - (k - 2), k - 2 делится на 13, k = 13 - 11 = 2
n = 77 * 2 + 1 = 155 < 317, не подходит.

Ответ. 183

(148k баллов)