Решите за 30 баллов ( с объяснением) sin(x+30)+cos(x+60)=1+cos2x

0 голосов
32 просмотров

Решите за 30 баллов ( с объяснением) sin(x+30)+cos(x+60)=1+cos2x


Алгебра (533 баллов) | 32 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Task/27400429
--------------------
Решите       sin(x+30)+cos(x+60 ) =1+cos2x 
---------------------
cos(x+60°)+sin(x+30°) =1+cos2x  ;
1 способ 
cosx*cos60° - sinx*sin60° +sinx*cos30° +cosx*sin30° =1+cos2x  ;
(1/2)*cosx  - (√3 /2 )sinx  + sinx* (√3 /2 ) +cosx*(1/2) =2cos²x  ;
cosx = 2cos²x ;
2cosx (cosx -1/2)= 0  ;
cosx =0 ⇒ x =π/2+πn , n ∈Z .
или 
cosx -1/2=0 ⇔cosx =1/2  ⇒ x = ±π/3 +2πk  , k  ∈ Z.

ответ : π/2+πn ,n ∈Z ;  ±π/3 +2πk  , k  ∈ Z.
----------------------------------------------------------
2 способ
cos(x+60°)+ cos(90° -(x+30°) ) =1+cos2x ;
cos(x+60°)  +cos(60°- x) =1+cos2x ;
2cos60°*cosx =2cos²x ;
cosx = 2cos²x ;
... дальше как в 1 способе
* * * * * * *  P.S. * * * * * * *
cos(α+β) =cosαcosβ - sinαsinβ ;
sin(α+β) =sinαcosβ + cosαsinβ ;
cos2x =cos²x -sin²x = 2cos²x - 1⇒1+cos2x =2cos²x ;.
cos(90° - α) =sinα  
cosα+cosβ= 2cos(α+β)/2 *cos(α-β)/2 .

(181k баллов)