Помогите, пожалуйста решить!!!! Найдите общее решение дифференциального уравнения первого...

0 голосов
68 просмотров

Помогите, пожалуйста решить!!!!
Найдите общее решение дифференциального уравнения первого порядка.
(x-y)y-x^{2} y'=0


Математика (355 баллов) | 68 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Решите задачу:

(x-y)y-x^2y'=0\\\\y'= \frac{(x-y)y}{x^2}\; ,\; \; \; y'= \frac{xy-y^2}{x^2}\; ,\; \; \; y'= \frac{y}{x}- (\frac{y}{x})^2\\\\u= \frac{y}{x}\; ,\; \; y=ux\; ,\; \; y'=u'x+ux'=u'x+u\; \;
 \; (x'=1)\\\\u'x+u=u-u^2\\\\u'= -\frac{u^2}{x} \; ,\quad \frac{du}{dx} =-\frac{u^2}{x} \; ,\quad \int \frac{du}{u^2}=-\int \frac{dx}{x} \\\\-\frac{1}{u}=-\ln|x|+C\\\\- \frac{x}{y} =-ln|x|+C\\\\y=\frac{x}{ln|x|-C}
(831k баллов)