Из 5 цифр 1, 2, 3, 4, 5 можно составить такие множества:
1) {} - пустое множество, 1 множество.
2) {1} - из одной цифры, 5 множеств.
3) {1, 2} - из 2 цифр, C(2, 5) = 5*4/2 = 10 множеств.
4) {1, 2, 3} - из 3 цифр, C(3, 5) = 5*4*3/(2*3) = 10 множеств.
5) {1, 2, 3, 4} - из 4 цифр, 5 множеств.
6) {1, 2, 3, 4, 5} - из 5 цифр, 1 множество.
Всего 1 + 5 + 10 + 10 + 5 + 1 = 32 множества.
Заметим, что 32 = 2^5. Количество подмножеств любого множества всегда равно 2 в степени количества элементов главного множества.
2 задача
а) конечные - A, C, D.
б) бесконечные: N, Z, P.
в) заданные перечислением - A, C, P.
г) заданные хар. свойством - D.