Помогите 20 балов пжжжжжжэ

0 голосов
35 просмотров

Помогите 20 балов пжжжжжжэ


image

Алгебра (74 баллов) | 35 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

▪1

\frac{{a}^{2} + {b}^{2} }{ {a}^{2} - {b}^{2} } - \frac{a - b}{a + b} = \frac{ {(a + b) }^{2} - 2ab - (a - b) ^{2} }{(a - b)(a + b)} = \frac{ {a}^{2} + 2ab + {b}^{2} - 2ab - {a}^{2} + 2ab - {b}^{2} }{(a - b)(a + b)} = \frac{2ab}{ {a}^{2} - {b}^{2} }

▪2
\frac{3 {a}^{2} - 6 {a}^{2} }{ {a}^{2} - 9 } - \frac{2a}{a - 3} = \frac{ - 3 {a}^{2} - 2a(a + 3)}{ {a}^{2} - 9 } = \frac{ - 3 {a}^{2} - 2 {a}^{2} - 6a }{ {a}^{2} - 9 } = \frac{ - 5 {a}^{2} - 6a }{ {a}^{2} - 9 } = - \frac{a(5a + 6)}{ {a}^{2} - 9 }

▪3

\frac{2a}{ {a}^{2} - 9} - \frac{1}{a + 3} = \frac{2a - (a - 3)}{ {a}^{2} - 9} = \frac{2a - a + 3}{{a}^{2} - 9} = \frac{a + 3}{{a}^{2} - 9} = \frac{1}{a - 3}

▪4

4c - \frac{4 {c}^{2} - 2c}{2 + c} =\frac{4c(2 + c) - 2c(2c - 1)}{2 + c} = \frac{8c + 4 {c}^{2} - 4 {c}^{2} + 2c}{2 + c} = \frac{10c}{2 + c}

▪5

\frac{ {a}^{2} - {b}^{2} }{5 {a}^{2} } \times \frac{a}{3a + 3b} = \frac{(a - b)(a + b)a}{5 {a}^{2} \times 3 (a + b)} = \frac{a - b}{15a}

▪6

\frac{a + x}{a} \div \frac{ax + {x}^{2} }{ {a}^{2} } = \frac{(a + x) \times {a}^{2} }{a \times x(a + x)} = \frac{a}{x}

▪7

\frac{a + 2}{ {a}^{2} } \div \frac{a + 2}{a - 3 {a}^{2} } = \frac{(a + 2) \times a(1 - 3a)}{ {a}^{2} \times (a + 2)} = \frac{1 - 3a}{a}

(29.4k баллов)