С помощью дифференциала приближенно вычислить данные вычислить данные величины и оценить...

0 голосов
147 просмотров

С помощью дифференциала приближенно вычислить данные вычислить данные величины и оценить допущенную относительную погрешность (с точностью до двух знаков после запятой )
(5,07)^3


Математика (108 баллов) | 147 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Используем функцию х^3
Ее производная f' = 3x^2

Теперь используем определение дифференциируемой функции
f(x_0+h) - f(x_0) = f'(x_0)h+ o(h)
где h - приращение функции, в нашем случае оно равно 0.07, потому что мы представляем 5.07 как сумму 5+0.07

Далее знак равенства означает не равенство, а приблизительное равенство.

f(5+0,7) - f(5) = f'(5) * 0.07
5.07^3 = 3*5^2*0.07 + 5^3 =125 + 75*0.07 = 125 + 0.75*7 = 125 + 5.25 = 130.25

f(5.07) = 130.25

Посчитаем 5.07^3 на калькуляторе.
Это равно 130.32

Итого, погрешность составляет 0.7

(5.2k баллов)