Дом имеет форму квадрата, разделенного ** 9 одинаковых квадратных комнат. В каждой...

0 голосов
126 просмотров

Дом имеет форму квадрата, разделенного на 9 одинаковых квадратных комнат. В каждой комнате живёт либо рыцарь, который всегда говорит правду, либо лжец, который всегда лжет. Каждый житель дома сказал: "Среди моих соседей Рыцарей больше, чем лжецов". Известно, что среди жильцов есть и рыцари, и лжецы. Сколько среди них рыцарей?


Математика (40 баллов) | 126 просмотров
Дан 1 ответ
0 голосов

Пронумеруем квартиры в доме:

1       2       3

4       5       6

7       8       9

Очевидно, что их расположение обладает центральной симметрией. Поскольку в доме имеются и рыцари и лжецы, то расположим в квартиру под номером 5 рыцаря. У него четверо соседей в квартирах 2, 4, 6 и 8. Поскольку он всегда говорит правду, то его соседями должны быть либо четверо рыцарей, либо трое рыцарей и двое лжецов. Допустим вначале, что все его соседи являются рыцарями. Тогда или все жители дома будут рыцарями, а это не так по условию или в двух из угловых квартир будет по лжецу и соседями лжецов будут по два рыцаря, но это невозможно, поскольку лжецы всегда лгут. Пусть теперь у рыцаря из квартиры 5 трое соседей рыцари, а один, допустим из 8-й квартиры, лжец. Тогда жители квартир 7 и 9 тоже лжецы, а квартир 1 и 3 - рыцари. Т. е. всего имеем 6 рыцарей и 3 лжецов. Разместив изначально в 5-ой квартире лжеца, убеждаемся, что решение единственно.

Ответ: 6 рыцарей

(219k баллов)