Если обозначить члены арифметической прогрессии:
х, х+d, x+2d, x+3d
То после изменений получим члены геометрической прогрессии:
x, x+d, x+2d+4, x+3d+16.
По свойству членов геометрической прогрессии:
(x+d)/x=(x+2d+4)/(x+d)
(x+d)/x=(x+3d+16)/(x+2d+4)
Решаем систему из этих двух уравнений. Перемножим по свойству пропорции и приведем подобные члены, получим систему:
x=d²/4
d=0 - не имеет смысла
d=4.
x=16/4=4.
Получили числа арифметической прогрессии: 4, 8, 12, 16.