Решить уравнение корень 2017-й степени из (sin x) плюс корень 2018-й степени из (cos x)...

0 голосов
40 просмотров

Решить уравнение

корень 2017-й степени из (sin x) плюс корень 2018-й степени из (cos x) =1.

Извинение. В последнее время не удается записать условие задачи в TeX'е.
Не понимаю, в чем причина


Алгебра (64.0k баллов) | 40 просмотров
0

²⁰¹⁷√sinx + ²⁰¹⁸√cosx = 1

0

Спасибо. А вот в условии задания написать так не удается))

Дан 1 ответ
0 голосов
Правильный ответ

1) cosx≥0 - так как под корнем четной степени.
sinx≥0, так как иначе \sqrt[2017]{sinx} \ \textless \ 0, \sqrt[2018]{cosx} \leq 1, \sqrt[2017]{sinx} + \sqrt[2018]{cosx}\ \textless \ 1
Значит, решения могут быть только в I квадранте (включая границы).
2) Очевидно, что x1=2πn и x2=π/2+2πn являются решениями данного уравнения. В первом случае sinx=0, cosx=1, во втором sinx=1, cosx=0.
3) Покажем, что других корней быть не может.
Найдем производную функции 
f(x)=\sqrt[2017]{sinx} + \sqrt[2018]{cosx}
f'(x)=(\sqrt[2017]{sinx} + \sqrt[2018]{cosx})'= \frac{cosx}{2017\sqrt[2017]{sin^{2016}x} } -\frac{sinx}{2018\sqrt[2018]{cos^{2017}x} }
Так как x - в первом квадранте, то sinx постоянно возрастает, cosx постоянно убывает, значит "первая часть" в производной
\frac{cosx}{2017\sqrt[2017]{sin^{2016}x} }
постоянно убывает от +∞ (справа при стремлении к 0) до 0 (в π/2),
а "вторая часть"
\frac{sinx}{2018\sqrt[2018]{cos^{2017}x} }
постоянно возрастает от 0 (в 0) до +∞ при стремлении к π/2.
Это значит, что производная положительна до некого x_max на [0;x_max)
и отрицательна на (x_max;π/2], принимая одно нулевое значение в x_max на отрезке [0;π/2]
Так как на концах отрезка [0;π/2] рассматриваемая функция принимает значения, равные 1, во всех остальных точках отрезка [0;π/2] она принимает значения строго больше 1.
Следовательно, других корней исходного уравнения нет.

(8.5k баллов)