Число кратное 88, оно четврехзначное и состоит из четных чисел, которые не повторяются

0 голосов
48 просмотров

Число кратное 88, оно четврехзначное и состоит из четных чисел, которые не повторяются


Математика (15 баллов) | 48 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Число де­лит­ся на 88, если оно де­лит­ся на 8 и на 11. При­знак де­ли­мо­сти на 8: число де­лит­ся на 8 тогда и толь­ко тогда, когда три его по­след­ние цифры — нули или об­ра­зу­ют число, ко­то­рое де­лит­ся на 8. При­знак де­ли­мо­сти на 11: число де­лит­ся на 11, если сумма цифр, ко­то­рые стоят на чет­ных ме­стах равна сумме цифр, сто­я­щих на не­чет­ных местах, либо раз­ность этих сумм де­лит­ся на 11. Ис­поль­зуя при­знак де­ли­мо­сти на 8, и учитывая, что все цифры ис­ко­мо­го числа долж­ны быть чётны и раз­лич­ны получаем, что по­след­ни­ми циф­ра­ми числа могут быть: 024, 048, 064, 208, 240, 264, 280, 408, 480, 608, 624, 640, 648, 680, 824, 840, 864. Ис­поль­зуя при­знак де­ли­мо­сти на 11 получим, что усло­вию за­да­чи удо­вле­тво­ря­ют числа: 6248, 8624, 2640.

Ответ: 2640, 6248 или 8624.

(56 баллов)