Пожалуйста помогите решить систему методом Крамера. Решение распишите подробнее. Очень...

0 голосов
62 просмотров

Пожалуйста помогите решить систему методом Крамера. Решение распишите подробнее. Очень хочется разобраться на этом примере.
3x+5y+7z=1
2x-y=2
4x+3y+2z=-1


Математика (19 баллов) | 62 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Строишь матрицу по системе уравнений:
\left[\begin{array}{ccc}3x&5y&7z\\2x&-1y&0?\\4x&3y&2z\end{array}\right] (x, y, z написал для наглядности)..

...и вектор к нему(из результатов уравнения) \left[\begin{array}{ccc}1\\2\\-1\end{array}\right]

Формула для нахождения определителя методом треугольника:
a₁₁*a₂₂*a₃₃ - a₁₁*a₃₂*a₂₃ - a₁₂*a₂₁*a₃₃ + a₁₂*a₃₁*a₂₃ + a₁₃*a₂₁*a₃₂ - a₁₃*a₃₁*a₂₂
(a - элемент матрицы, нижние индексы - позиция элемента в матрице).

Методом треугольника находишь определитель матрицы:
∆ = 3*(-1)*2 - 3*0*3 - 2*5*2 + 2*7*3 + 4*5*0 - 4*7*(-1) = 44
Чтобы решать дальше, определитель не должен быть равен нулю.

Заменяешь первый столбец матрицы(x), на вектор:
\left[\begin{array}{ccc}1&5&7\\2&-1&0\\-1&3&2\end{array}\right]
Методом треугольника находишь определитель матрицы:
∆x = 1*(-1)*2 - 1*0*3 - 2*5*2 + 2*7*3 + (-1)*5*0 - (-1)*7*(-1) = 13

Заменяешь второй столбец матрицы(y), на вектор:
\left[\begin{array}{ccc}3&1&7\\2&2&0\\4&-1&2\end{array}\right]
Методом треугольника находишь определитель матрицы:
∆y = 3*2*2 - 3*0*(-1) - 2*1*2 + 2*7*(-1) + 4*1*0 - 4*7*2 = -62

Заменяешь третий столбец матрицы(z), на вектор:
\left[\begin{array}{ccc}3&5&1\\2&-1&2\\4&3&-1\end{array}\right]
Методом треугольника находишь определитель матрицы:
∆z = 3*(-1)*(-1) - 3*2*3 - 2*5*(-1) + 2*1*3 + 4*5*2 - 4*1*(-1) = 45

Когда все определители найдены по очереди делишь определители ∆x, ∆y, ∆z на ∆(определитель первой матрицы). 
x = \frac{13}{44} = 0.295
y = \frac{-62}{44} = -1.409
z = \frac{45}{44} = 1.023

Проверка обычной заменой:
3*0.295+5*(-1.409)+7*1.023 = 1
2*0.295-1*(-1.409)+0*1.023 = 2
4*0.295+3*(-1.409)+2*1.023 = -1

(9.4k баллов)
0

Вроде так. Будет проверять кто-нибудь, может исправит/дополнит.

0

Ой. Опечатки в матрицах. Сейчас исправлю.