Вычислите: sin(90°) + tg(135°) × sin^2( – 60°) -ctg(315°) – cos(240°) Ответ:1,75

0 голосов
181 просмотров

Вычислите:
sin(90°) + tg(135°) × sin^2( – 60°) -ctg(315°) – cos(240°)
Ответ:1,75


Алгебра (1.6k баллов) | 181 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

Sin90 + tg135 *Sin²(- 60) - ctg315 - Cos240 = 1 + tg(90 + 45) * Sin²60 -
- Ctg(270 + 45) - Cos(180 + 60) = 1 - Ctg45 * Sin²60 + tg45 + Cos60 =
= 1 - 1 * 3/4 + 1+ 1/2 = 1 - 0,75 + 1 + 0,5 = 1,75

(219k баллов)
0 голосов

Sin(90°) + tg(135°) * sin²(-60°) - ctg(315°) - cos(240°) = sin(90°) + tg(90° + 45°) * sin²(60°) - ctg(360° - 45°) - cos(270° - 30°) = sin(90°) - ctg(45°) * sin²(60°) + ctg(45°) + sin(30°) = 1 - 1 * (√3/2)² + 1 + 1/2 = 5/2 - 3/4 = 7/4 = 1 3/4 = 1,75

(25.4k баллов)