Решить систему уравнений

0 голосов
20 просмотров

Решить систему уравнений


image

Математика (356 баллов) | 20 просмотров
Дан 1 ответ
0 голосов
\left \{ {{x^2-xy-20y^2=0} \atop {x^2+2xy-3y^2=32}} \right.;
 \left \{ {{x^2-5xy+4xy-20y^2=0} \atop {x^2+2xy+y^2-4y^2=32}} \right. ; \left \{ {{x(x-5y)+4y(x-5y)=0} \atop {(x+y)^2-(2y)^2=32}} \right.; \\

\left \{ {{(x+4y)(x-5y)=0} \atop {(x+y-2y)(x+y+2y)=32}} \right.;
\left \{ {{x=-4y\ or\ x=5y} \atop {(x-y)(x+3y)=32}} \right. ;\\

 \left \{ {{x=-4y} \atop {(-4y-y)(-4y+3y)=32}} \right. \ or\ \left \{ {{x=5y} \atop {(5y-y)(5y+3y)=32}} \right.;\\

\left \{ {{x=-4y} \atop {5y^2=32}} \right. \ or\ \left \{ {{x=5y} \atop {32y^2=32}} \right.;\\

 \left \{ {{x=-4y} \atop {y=\pm 4\sqrt{\frac{2}{5}} }} \right. \ or\ \left \{ {{x=5y} \atop {y=\pm1}} \right.;\\

 \left \{ {{x=\mp16 \sqrt{ \frac{2}{5} } } \atop {y=\pm 4\sqrt{\frac{2}{5}} }} \right. \ or\ \left \{ {{x=\pm5} \atop {y=\pm1}} \right..\\

Answer: (-16 \sqrt{ \frac{2}{5}};\ 4 \sqrt{ \frac{2}{5}}),\ (+16 \sqrt{ \frac{2}{5}};\ -4 \sqrt{ \frac{2}{5}}),\ (5;\ 1),\ (-5;\ -1)
(8.6k баллов)