Если имеет значение относительный порядок поддеревьев T1, . . . ,Tm , то говорят, что дерево является упорядоченным. Число поддеревьев данного узла называется степенью этого узла. Узел с нулевой степенью называется концевым узлом (или листом или терминальным узлом), все остальные элементы – внутренние узлы (нетерминальные). Максимальная степень всех вершин называется степенью дерева. Корень дерева имеет уровень равный 0. Остальные вершины имеют уровень на единицу больше уровня непосредственного предка. Максимальный уровень какой-либо из вершин называется глубиной или высотой дерева. Минимальная высота при заданном числе вершин достигается, если на всех уровнях, кроме последнего, помещается максимально возможное число вершин. Максимальное число вершин в дереве высотой h достигается в том случае, если из каждой вершины, за исключением уровня h, исходят d поддеревьев, где d –степень дерева: на 0-м уровне 1 вершина, на 1-м – d потомков, на 2-м – d2 потомков, на 3-м уровне d3 потомков и т.д.
Наиболее широко используются двоичные (бинарные) деревья. Бинарное дерево это конечное множество элементов, которое либо пусто, либо состоит из корня и из двух непересекающихся бинарных деревьев, называемых левым и правым поддеревьями данного корня. Таким образом, каждый элемент бинарного дерева имеет 0, 1 или 2 поддерева. Бинарное дерево – упорядоченное дерево, так как в нем различают левое и правое поддеревья.