Заметим, что подряд не могут сидеть 5 рыцарей: для крайнего левого справа уже сидят 4 рыцаря, вне зависимости от того, кто будет пятым, хотя бы двоих лжецов не будет.
Рассмотрим лжеца. Справа от него должны сидеть 4 рыцаря и лжец, запишем рассадку так: Л{nР}Л{mР} — лжец, потом n рыцарей, потом опять лжец и m = 4 - n рыцарей. Докажем, что следующая шестёрка будет сидеть так же.
Следующим будет сидеть лжец, чтобы рыцарь, сидящий на втором месте, сказал правду. Затем 4 - m = n рыцарей, чтобы лжец, сидящий на месте n + 2, соврал. Затем снова лжец, чтобы рыцарь на месте n + 3, соврал, и ещё m рыцарей для лжеца на 7 месте.
Итого, лжецы и рыцари сидят десятью одинаковыми шестёрками, в каждой из которых по 4 рыцаря и 2 лжеца.
Всего получается 4 * 10 = 40 рыцарей.