- парабола (
). Так как коэффициент при x больше 0, то ветви направлены вверх. Значит она монотонно убывает от -∞ до xm и монотонно возрастает от xm до +∞, где xm - точка, в которой f(x) минимальна.
Найдем точку минимума функции. Для этого воспользуемся необходимым условием минимума функции: в точке локального минимума производная функции равна 0.
Значит, промежутки монотонности будут:
Убывание (-∞; -2,5)
Возрастание (-2,5; ∞)