из точки ** основании треугольника проведены прямые, параллельные боковым сторонам. они...

0 голосов
98 просмотров

из точки на основании треугольника проведены прямые, параллельные боковым сторонам. они разбивают треугольник на параллелограм и два треугольника с площадями S₁ и S₂. найдите площадь параллелограмма. помогите пожалуйста, завтра сдавать)


Геометрия (99 баллов) | 98 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

пусть точка на стороне АС = с (не важно, как обозначить, это не понадобится в решении) отсекает отрезок АМ = x*c. Тогда второй отрезок (1 - х)*с. 

х, конечно, неизвестно.

Но.

Треугольники, отсеченные параллельными прямыми, подобны исходному. Это одначает, что у первого треугольника все стороны отностятся к сторонам исходного тр-ка, как х, а площади их отностятся, как х^2, то есть

S1 = S*x^2;

S - площадь треугольника, тоже неизвестная, как и х.

(Если вы не знаете, как относятся площади подобных фигур, если задано отношение сторон, дело плохо :((()

Для второго треугольника, тоже подобного исходному, аналогичное выражение

S2 = S*(1 - x)^2;

Делим второе соотношение на первое, и получаем уравнение для х

(1 - х)^2/x^2 = S2/S1;

Извлекаем корень и решаем отностиельно х, получаем

x = корень(S1)/(корень(S2) + корень(S1));

Подставляем опять в первое соотношение, получаем S

S = S1/x^2 = (корень(S2) + корень(S1))^2 = S1 + S2 + 2*(корень(S2*S1));

Площадь параллелограмма равна S - S1 - S2, поэтому ответ

2*(корень(S2*S1)). Удвоенное среднее геометрическое.

(69.9k баллов)