N^2+m^2+12^2+3 ⩾ 2(n+m+12) Доказать неравенство
N²+m²+12²+3≥2(n+m+12) n²+m²+12²+(1+1+1)≥2n+2m+2*12 n²-2n+1+m²-2m+1+12²-2*12+1≥0 (n-1)²+(m-1)²+(12-1)²≥0 доказано