Напишите уравнение касательной к графику функции f(x)=(2x-1)^3 в точке с абсциссой х0=1
Уравнение касательной к кривой у=f(x) в точке х₀ имеет вид: y-f(x₀)=f`(x₀)(x-x₀) f(x₀)=f(1)=(2·1-1)³=1 f`(x)=3·(2x-1)²·(2x-1)`=6·(2x-1)² f`(x₀)=6·(2-1)²=6 y - 1 = 6(x - 1) y = 6x - 5